Finite Simple Groups of Lie Type as Expanders
نویسنده
چکیده
are uniform expanders. Nikolov [N] proved that every classical group is a bounded product of SLn(q)’s (with possible n = 2, but the proof shows that if the Lie rank is sufficiently high, say ≥ 14, one can use SLn(q) with n ≥ 3). Bounded product of expander groups are uniform expanders. Thus together, their results cover all classical groups of high rank. So, our Theorem is new for classical groups of small ranks as well as for the families of exceptional groups of Lie type. Theorem 1.1 gives the last step of the result conjectured in [BKL] and announced in [KLN]:
منابع مشابه
OD-characterization of $U_3(9)$ and its group of automorphisms
Let $L = U_3(9)$ be the simple projective unitary group in dimension 3 over a field with 92 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. Since $Aut(L)equiv Z_4$ hence almost simple groups related to $L$ are $L$, $L : 2$ or $L : 4$. In fact, we prove that $L$, $L : 2$ and $L : 4$ are OD-characterizable.
متن کاملLocally finite basic classical simple Lie superalgebras
In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.
متن کاملUniversal lattices and unbounded rank expanders
We study the representations of non-commutative universal lattices and use them to compute lower bounds for the τ -constant for the commutative universal lattices Gd,k = SLd(Z[x1, . . . , xk]) with respect to several generating sets. As an application of the above result we show that the Cayley graphs of the finite groups SL3k(Fp) can be made expanders using suitable choice of the generators. T...
متن کاملOn the Shortest Identity in Finite Simple Groups of Lie Type
We give bounds on the shortest identity in finite simple groups of Lie type.
متن کاملUNRAMIFIED BRAUER GROUPS OF FINITE SIMPLE GROUPS OF LIE TYPE Al FEDOR BOGOMOLOV, JORGE MACIEL, AND TIHOMIR PETROV
We study the subgroup B0(G) of H (G, Q/Z) consisting of all elements which have trivial restrictions to every Abelian subgroup of G. The group B0(G) serves as the simplest nontrivial obstruction to stable rationality of algebraic varieties V/G where V is a faithful complex linear representation of the group G. We prove that B0(G) is trivial for finite simple groups of Lie type Al.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009